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1 Introduction

Optimal assembly of a coherent system from a given set of n components is an important
theme of research in reliability Theory. For instance see El-Neweihi. Proschan and Sethu-
raman (1986). Derman, Lieberman and Ross (1974). Boland. El-Neweihi and Proschan
(1988) (henceforth referred to as BEPI), Boland. El-Neweihi and Proschan (1992) (hence-
forth referred to as BEP2). Shaked and Shantikunar (1992) (henceforth referred to as SS)
among others. Such an assembly may involve bolstering the original components of the
system by spares which can be used as replacements upon failure (standby redundancy) or
connected in parallel with the components (active redundancy). The original components
can also be strengthened by performing a certain number of minimal repairs at each failure.
BEP2 and SS have demonstrated the relevance of various modes of stochastic ordering of
lifetimes of components in optimal allocation problems. We extend their results to more
general setups using mainly the familiar techniques of Al and Schur functions.

BEP2 considered the optimal allocation of a single spare as a standby redundancy to
one of the n components of a series or parallel system. In this paper we study the optimal
assignment of n spares which are available as standby redundancy, one each, to the n
components of series or parallel system, thus extending the results of BEP2. These results.
given in Section 3, may be described informally as follows. If the components and the
spares are hazard (reverse hazard) rate ordered and the system is a series (parallel) system,
then one should assign the stronger (weaker) spares to the weaker components. in order.

We also consider the optimal allocation problem in other systems. In one class of
systems. the system-lifetimes are determined by damages, introduced bv shocks. exceeding
random thresholds. The problem here is the optimal matching between the thresholds
of the components and the parameters of the processes governing the arrival of shocks.
In another class of systems, it is possible to bolster the system by performing a certain
number of minimal repairs to components. When the available number of minimal repairs
is specified. one has to find the optimal assignment of these minimal repairs to the various
components to maximize reliability of the system. In a third class of problems. we consider
a large system based on n similar modules. It is possible to bolster the first component of
each module. by placing spares, in active redundancy. Given the total number of spares
available, we find the optimal allocation of spares to the components. These optimal
allocation results are obtained in Section 4. Some of the results here are new and others
improve upon earlier ones obtained by SS and BEP1.

We collect a few definitions of various orderings among random variables and their
interrelationships in Section 2. We will assume that the reader is familiar with the theory Fo

of Schur and Al functions as found for instance in the textbook of Marshall and Olkin El
(1979). J D
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2 Preliminaries

We will now define some of the standard concepts of ordering among random variables.
In this paper we will use the words increasing to denote nondecreasing and decreasing to
denote nonincreasing. Let X and V be two random variables with distribution functions
(df's) F and G.respectively. Let F(x) = 1 - F(x) and G(x) = 1 - G(x). We say Ihat

St

s > Y if F(x) > 0(x) for all x.
hr

X > Y if F(x)/G(x) is increasing for all x.
rhr

X > Y if F(x)/G(x) is increasing for all x, and

X Y V if f(x)/g(x) is increasing for all x

where f and g are the probability density functions (pdf's) of X and 1'. respectively. It is
well known, for instance see Ross (1983). that

Ir hr st
> Y implies that X > Y implies that X > Y, and
ir hr t t st

* > Y implies that 1 > implies that X > Y.

When X and Y are both nonnegative random variables with absolutely continuous
hr rhr

distributions, then saying that X > Y (X > Y) is equivalent to saying that the hazard
(revers hazard) rate function of X is pointwise less than (greater than) or equal to that
of Y. This explains the nomenclature for such orderings. Earlier work in this area. for
instance see Keilson and Sumita (1982), have called the hazard rate ordering as uniform
stochastic order in the positive direction.

Consider a unit whose lifetime has df F. The concept of minimal repair upon the failure
of this unit that has been successfully used in Reliability Theory . see Barlow and Hunter
(1960) and Ascher and Feiijgold (1984), and can be described as follows. If the item fails
at time t then the minimal repair amounts to replacing the item with a functioning item
of the same age, more formally, the df of the lifetime of the repaired item is given by
(F(.r) - F(t))/F(t) for x > t. Let 1i(t) be the number of minimal repairs performed in
time t. if minimal repairs are performed every time an item fails. It is well known that
{M(t), t > 0} is a nonhomogeneous Poisson process with parameter - log E(f), see Ascher
and Feingold (1984).



3 Optimal assignment of standby redundancy to
components of series and parallel systems

We begin with a brief summary of some existing work on optimal allocation of redun-
dancy in coherent systems. Consider a system S of n independent components with lifetimes
X 1. 2 ..... X,. Suppose that there are n independent spares with lifetimes )'. I ..... 1
The components can be enhanced by placing the spares in parallel, one to each component
that is in active redundancy. Suppose that the components and spares are ordered by the

st st St St st st

usual stochastic ordering, that is, X1 _ N2 < "" < X,, and Y _ ... < )', and that S
is a k-out-of-n system. BEPI obtained fairly general results on optimal allocation in this
problem. They showed that the optimal allocation is to assign spares to components in the
reverse order to maximize the reliability of the system, and in fact that

hkt,(P(X,, V ) 7; > t).r = 1,2... ,n)

is an AD function of (r.r') . where hkln(p1.p2, ... pn) is the reliability function of a
k-out-of-n system and 7r and 7r- are two permutations of (1,2,... .n).

Instead of using the spdres in active redundancy, one can use them as replacements
upon failure, that is in &tandby redundancy. The problem of optimal allocation of spares
in this mode of redundancy has proved of be less tractable. In the recent paper, BEP2.
the following setup was considered. Suppose that there is a single spare which can be
assigned to some component as a replacement upon failure. Suppose that the components

hr hr hr

are ordered in the hazard rate ordering, that is X 1 _< X 2 < ... _< X, and that the system S
is a series system. BEP2 showed for this special case that the single spare should be assigned
to the weakest component. For the case of a parallel system with components ordered by
the reverse hazard ordering, they also showed that the spare should be assigned to the
strongest component to maximize reliability. They also provided counterexamples to show
that the hazard rate and reverse hazard rate orderings cannot be weakened to stochastic
ordering and that their results do not extend to more general k-out-of-n systems.

In this section we consider this situation where, instead of just one spare, there are n
spares to be assigned, one each, in standby redundancy to the n components. and obtain
optimal allocation results for both parallel and series systems.

The following lemmas concerning random variables ordered by the hazard rate and
reverse hazard ordering are the key results in obtaining our optimal allocation results of
this section.

hr
Lemma 1 Let X,Y be random variables with df's F.G satisfying X > 1". Let b(x) be a
bounded nonnegative increasing function. Then for any bounded increasing function h(x)

f h(x)b(x)dF(x) > f h(x)b(x)dG(x) (3.1)
f b(x)dF(x) - f b(x)dG(x)

3



Proof: To prove the (3.1) it is enough to prove that

IJLe] b(x)dG(x)] b(x)dF(x) - j b(x)dF(x)] b(x)dG(xr) 0

for all t and for the class of functions b(x) of the form b(x) = ZO<,<, ail,(x). where a, > 0.

tE (-oc. oc) such that tj < t tj~i for some i with 0 < ' < 7-n. In the following, we will
observe the usual conventions that summations over vacuous regions are zero. It is easy, to
see t hat

E= [Z o(O(t) - 0(t))[ I akF(tk) + Z QrF(t,)]

- [~ a(F(,)-PF(t))j [ Z- QkG(tk) + E QrG(tr)]O~j~iO~k~ii+l<r<m

+ : 0j 'ak IP 00((1j) + G(tk)) - G(t)(F(tj) + F(tk))]

+ 1 E ajar rlp((Ltj - P-1] 32
O<j: i i+l<r<ml ~) (r(~j)-Ft) 32

hr
Since X > Y', we get the two inequalities

F~)~t)- G(t)F(tj) = Ft)__ L - P~1(tj)O(ti > 0 when < ' (3.3)

and

F(t) (G(t- ) - G(r) Gt (F~j) - F(t))

[F ~t) (C ) G(t )) U) G ( ,) F( ) ) F(tj)OCU,) > 0 when r > j'.(3.4)

Applying the inequality (3.3) to the first two terms of (3.2) and the inequality (3.4) to the
last term of (3.2). we find that I > 0.

It is clear that (3.1) holds even when we can allow the functions h and b t~o be also
unbounded as long as all the integrals in (3.1) are finite. For such and other generalizations
see Cap~ra (1988).

h r
Lemrma 2 Let X1 ,X 2. Y1. Y be independent randomz variables such that X, ! X 2 and

rhr
Y' > 1'". Then

P(X1  )(' 2 > PX, ! )-)P(x 2 > }1) (3,5)

4



Proof: Let the df's of .V 1,.X2 , 1, be FT, f 2. G1 .G 2 , respectively. To prove (3.5) we see
that

P(Xi > Y )P(X 2 >_ Y2)- P(X, > V2 )P(X 2  I )])

= I G, (x)dF(xi)J G2( 2)dF 2(X 2 )- JG 2(xI)dF(x)J Gi(x 2 )dF 2(:2 ) 2_0

by appealing to Lemma 1 and taking F = / 1, G = F2 . b = G 2 and h = GI/G2.

We now exploit the above lemma to obtain optimal allocation results for series and
parallel systems when spares have to be allocated to components as standby redundancy.

Theorem 1 Consider a system S consisting of n components in series with indcpendent
liftimes X 1,X 2 , .. . ,X,. Suppose thai n independent spares with lifetimes I. 12 ..... ..

which are independent of the components, are available as standby redundancy. on( (ach to
hr hr hr hr hr hr

a component. Suppose that X 1 >_ X 2  " > Xn and 1 > Y' >_ " > )'. Fot > 0, and
for permutations -7r. r' of (1,2,.... n), define

gt(r,7r*) = P((X> + Y-;) > tr = 1,..n).

Then gt(7r, 7r') is an AD function for each t > 0.

Proof: By standard methods for AD functions it is enough to prove this result for the case
hr rhr

n = 2. Note that ] >_ Y' is equivalent to -Y + i > -V1 + f. for each t. From (3.5) it
follows that

P(X 1 + 1 > t)P(X2 + 11  _ t) > P(X + V1  t)P(X2 + Y2 > 1).

This proves that gt(7r7r*) is an AD function when n = 2.C
From this theorem it is clear that in order to maximize the reliability of the system S

one should allocate the spares with lifetimes 1 , Y',. .. , . to the components with lifetimes
X 1X 2 .. ,. X, in reverse order, that is the stronger spares should be allocated to the weaker
components in order.

Theorem 2 Consider a system P consisting of n components in parallel with independent
lifetimes X 1 , X 2 ,...,X, . Suppose that n independent spares with lifetimes YI. Y2, .... En ,

which are independent of the components, are available as standby redundancy, one each to
rhr rhr rhr rhr rhr rhr

a component. Suppose that X, >_ X 2 _ "'" _ X, andY' > Y'2 > ... > 1". For t > 0,
and for permutations 7r, -r- of (1,2,. .. , n), define

gt(7r, 7r') = I - P((X,, + 1k;) < t,r = 1..n).

Then gt(7r. r*) is an Al function for each I > 0.

5



rhr

Proof: Again, it is enough to prove this result for the case n = 2. Note that 1 2 is
hr

equivalent to -V + t > -1" + t. From (3.5) it follows that

P(X 1 + '2 < t)P(X2 + 'Y < t) > P(XI + ) < t)P(X 2 + 1"2 _< ).

This proves that gt(7r,7r*) is an Al function when n = 2.
From this theorem it is clear that in order to maximize the reliability of the system P

one should allocate the spares with lifetimes Y1, Y 2 .... , )" to the components with lifetimes
X1, X2,....X, in order., that is the stronger spares should be allocated to the stronger
components in order.

Remark 1 In Theorem 1 and Theorem 2 if we take )' to be any nonnegative random
variable and take Y2 = Y= Y, = 0 we obtain, as a special case, the results of
BEP2 for the optimal allocation of a single spare mentioned earlier at the beginning of this
section. BEP2 also showed that if the hazard (reverse hazard) rate ordering among the
lifetimes of the components in the series system S (P) were weakened to just stochastic
ordering, then such an optimal allocation result will not be true. These counterexamples
also show that we cannot weaken the conditions of hazard (reverse hazard) rate ordering
in Theorems 1 (Theorems 2).

Remark 2 Suppose that the series (parallel) structures considered in Theorems 1 and
Theorems 2 constituted a module within a larger coherent structure. The optimal allocation
conclusions of these theorems continue to hold for the larger coherent system as well.

Theorems 1 and Theorems 2 find applications when we know that the lifetimes of com-
ponents and spares are ordered by the hazard and reverse hazard rate orderings. Such
orderings are easily apparent if the lifetimes belong to a proportional hazards or propor-
tional reverse hazards family. For another family of distributions see the following corollary.

Corollary 1 Let U, V be two random variables with logconcave density functions. Let
r = (r1.r2,. rn) and s = (Sl.s 2 ..... sn). Suppose that the distribution of the lifetimes of
the independent components and spares are given by

Xi = ', ;
l~j_<rl<J~s,

i 1 ..,n, where the random variables Uj, are independent copies of U and l'i are
independent copies of V. Suppose that the spares are to be allocated to the components, one
each, as standby redundancy. Then

gt(r,s) dt= P((Xi + 1") t),i = 1. n)

is an AD function of (r, s) and

ht(r. s) I - P((X + < t). Z 1 ... n)

is on Al function of (r, s).

6



Proof: It is well known, for instance see Karlin and Proschan (1960), that, if U has a log
Ir hr rhr

concave density then Xi < X, whenever ri 5 r. and hence that \, < Nj and X, < N,.
A similar conclusion holds for the lifetimes of the spares. The corollary now follows from
Theorems 1 and Theorems 2.

4 More Applications of Schur and AI Functions in
Optimal Allocation

In this section we study some further optimal allocation problems. Once again we use
the standard techniques of Schur and Al functions to pinpoint the optimal allocations. It
will become clear that these techniques constitute the most natural, and at the same time,
very powerful tools in this area.

Consider a system ST consisting of n components situated at n locations. At location
i. shocks arrive according to a Poisson process {Nj(t),t > 0) with parameter A, and the
jth shock produces a random damage Dij to the component situated at that location, and
component i dies when the total accumulated damage becomes greater than or equal to its
random threshold XN, i= 1,2,...,n. In other words

Ti :< t if Dij > Xi
1 <.i N, (t)

where T is the lifetime of component i. We assume that the random variables {Dij are
i.i.d. with a common logconcave density and that. {{X ... , Xn, 1, {D~j,i = 1.2,..., j =
1,2. . ., }, {N (t). t > 0). .... , {N(t),t > 01) are independent. We will call such a system
as a shock-threshold system.

The following theorem pinpoints the optimal matching between the thresholds and the
parameters of the shock processes for both series and parallel systems.

Theorem 3 Consider a shock-threshold system ST as above.
hr hr

(A) Suppose that ST is a series system based on its components. Suppose that X1 < X 2 <
hr

•. X,. Let Ts(A) be the lifetime of the system ST. Then for every increasing function
g.

E(g(Ts(A)) is AI in A.

rhr
(B) Suppose that ST is a parallel system based on its components. Suppose that X1 <

rhr rhr

X 2 <_ ... < X, .Let Tp(A) be the lifetime of the system ST. Then for every increasing
function g,

E(g(Tp(,\)) is AD in A.

7



Proof: Notice that

P(T5 (A) > t) = P(X > Dj,=. n

= -P(X > E Dij, i= 1. exp(-A,€ t)
kr <j<k, I ki !

where k = (kl.k 2 ,. .. ,k,). No w

P(Xi > E Djj,i*= I,...,n)= .. P(XI > Xi, .... X" > X) (, X d ]..d

<<k,J

To say that the Xi's are hazard rate ordered is the same as saying that P(X, > x) is TP
in i and x. Since f(x) is logconvave, f(k)(X) is TP 2 in k and X, from Karlin and Proschan
(1960). From Hollander, Proschan and Sethuraman (1977) products of TP2 functions are
AI functions. Hence P(X1l > Xi,...,Xn > Xn) is Al in x and Hf(k,)(X,) is Al in (x.k).
Thus from the preservation theorem Hollander, Proschan and Sethuraman (1977) (Theorem

3.3) P(X, > FI<j<k, Di2.i = 1, , n) is Al in k. Again fIexp- AtLL§ is Al in (A, k).• " "k,!

By invoking the same preservation theorem we obtain that P(Ts(iA) > t) is AI in A. This
proves part (A) pertaining to a series system. Part (B) is proved in a similar fashion. <

Suppose that in a shock-threshold system described above we could permute the com-
ponents amongst the locations, still putting only one component at each location. The
above theorem shows that if the system is a series system based on its components then we
should allocate the weaker components to the locations with lesser intensity of shocks, in
order, to stochastically maximize the lifetime of the system. If the system were a parallel
system based on its components, then we should allocate the stronger components to the
locations with lesser intensity of shocks, in order, to stochastically maximize the lifetime
of the system. This agrees with the intuitive notions regarding series and parallel systems.

We will now consider a system S with n components and suppose that we can bol-
ster the components by performing minimal repair upon failure. SS considered this prob-
lem when the lifetimes of the components are ordered stochastically and there is a vector
(k, k2,.... kn) representing the numbers of minimal repairs that can be performed on the
components. When S is a parallel system they showed that the optimal allocation is to as-
sign smaller k,'s to the weaker components, in order. In what follows we provide a simpler
proof of this result and give a similar resulh when S is a series system.

at ' st

Theorem 4 Suppose that X 1 < X 2 <,... < X, with df's F 1, F2,.... F,, are the indepen-
dent lifetimes of components 1,2. .. ,n. Let k = (ki,...,k,) denote the number of minimal
repairs assigned to components 1,.... n, respectively. Let /p(t, k) (l (t, k) be th c survival
distribution of a parallel (series) system formed of components 1 .. n. Then

(i) H,(t, k) is AI in k for each t > 0.

(ii) Ils(t. k) is AD in k for each f > 0.

8



Proof: From the standard techniques u,-cd to prove that functions are Al or AD. we cal
assume that n = 2. Let li(t) be the number of minimal repairs performed in time t oil
component i. i = 1.'2 assuming that we can perform an unlimited number of repairs. Then

E(M(t)) = -log(1 - F1 (t)) > - log(1 - F2(t)) = E(.1 2(t).

Let X,(k) be the lifetime of the ith component when ki minimal repairs are performed on
it. Let k,1 < k2.Since the Poisson distribution is likelihood ratio ordered in its parameter.
it is also hazard and reverse hazard rate ordered in its parameter. Thus

P(M,(t) > ki + 1)P(MW2 (t) > k2 + 1) < P(Mi(t) > k2 + 1)P(M12() k-1 + I).

Now

Hr(t,k.k 2 ) = 1 - P( 0 ( M / 1 + 1.I-12(k 2 ) > / '2 + 1)

> 1 - P(A1 (I) k / 2 + 1.M 2(k 2 ) k, /,i + 1)

= 1 - P(Xj(k 2) t. tX(k) < 1) =Hr(.k 2. k).

The second part is established in a similar fashion by using the fact that the Poisson
processes M1 (t) and M2(t) are reverse hazard ordered.

Remark 3 In the above theorem. if we were given a vector k with k _ k,. K "" _ k,
and we could choose a permutation 7r and allocate k, minimal repairs to components

, i = 1,2-. n. The optimal allocation that maximizes stochastically the lifetime of a

parallel (series) system based on these components is to choose 7r = (1 ...... n) ( 7r
(n, n - 1, .. , 1)). The first part of the above theorem is due to SS. Our proof here is
shorter and our use of Al functions allowed us to extend the results to the series case.

We end this section by considering a situation of optimal allocation in which specific
components within modules of a system are targeted for bolstering by means of active
redundancy. \We describe some variants of this problem that have been considered before
and then present our extension.

Consider o components C1. 2,. C', which can be bolstered by adding spares inl paral-
lel. that is in active redundancy. Suppose that we have a vector (kk 2 .... k,) representing
the number of spares which are available for active redundancy. When the components and
bpares are identically distributed and the system is a k-out-of-n system, BEPI showed that
the reliability of the system is Schur-concave in (ki. k2 . • k,). Vhen these components are
parts of n similar ,libsystems and the larger system is a series system based on these subsys-
tems, SS showed ,nat the reliability of the supersytsem is Schur-concave in (k. 12 ..... ).
Such results immediately pinpoint the optimal choice of (k1,2 ....- k,). We now generalize
both these results to the case where the components are parts of n similar subsystems and
the larger system is a Tn-out-of-n system based on these n subsvstems.



Theorem 5 Let P be a coherent system with N component.. Let the first compontnt of
P be independent of the rest of the components. Let P,. P 2 ..... P, be ri independent (opic,,

of P. Let C, be tht first component of P, and suppose that we wish to bolster C, uith
, independent spares in active redundancy, i = 1.... . n. Suppose that the spares and

the components C1 ..... C, have lifetimes with common if F. Consider a larger system7, S

uhich is an m-out-of-n system based on P1,P 2 ... P,. . Let T(k) be the lifetime of S. Then
E(g(T(k)) is Schur concave in k, for every increasing function g.

Proof: Let Ti(ki) be the lifetime of Pi when its first component C, has been bolstered
with k, spares in active redundancy. Note that P(Ti(k,) <_ t) = a + bFk'+l(t) where a.b
are nonnegative constants related to the reliabilities of the system P with a functioning or
nonfunctioning component 1. and hence do not depend on i. Thus

P(T(k) > t) = 1 - h,-_,+,11 (a + bFk,+1(t)...,a + bFk_+1(t))

where h, -n+ll (Pl. p-,Pn) is the reliability function of an rn - n + 1-out-of-n system based
independert components with reliabilities p,.... ,p, Pledger and Proschan (1971) shoNed
that h,-,-njj,(pi,- .p) is Schur convex in (log pl.... log p,) and is clearly an increasing

m9
function of its arguments. Let k > k'. Since F(t)k+l is convex in k, it follows that
F(t)k+l + F(t)k2+I is Schur convex in (k.,k2 ). We can use this fact to show that (log(a +
bFk,+(t)),... ,log(a + bFk_+l(t))) > (log(a + bF +l(t)). log(a + bFk.+11(t))). Hence
P(T(k) > t) P(T(k') > t) for each t. Thus E(g(T(k)) is Schur concave in k. for every
increasing function g >

The above theorem generalizes previous results of BEPI and SS. BEP obtained the
above result for the case where P consisted of only one component. For more general
systems P. SS obtained the above result when the larger system is a series system based
on P1 ., P,, that. is when m = n.

Remark 4 Suppose that a total of L spares is available. Since E(g(T(k) is Schur concave
in k from t1-2 above theorem. we have to distribute the spares in the most homogeneous
fashion to obtain the optimal allocation. In fact, the optimal allocation vector is given
by k = (s 1 .. s + 1,s. s) where s,r are determined uniquely by the equation L =

r -

sn + r.0 < r < -1.
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